工程燃烧室单头部N0x算例

1. 计算设置

入口条件: 入口空气流量为 0.5089 kg/s, 入口压力 900800 Pa, 入口温度 703.3 K

使用机理: 50 种组分、90 步反应的简化的 RP-3 航煤骨架机理; 机理构建 与验证参考"常用机理"

网格设置: 网格规模 2100 万, 其中结构化网格 1900 万, 非结构化网格 300 万:

使用方法:湍流燃烧 FGM 方法、大涡模拟、PIMPLE 算法, FGM 数据库由预 混火焰生成

NO 通过输运方程预测:

$$rac{\partial}{\partial t}(ar{
ho} ilde{y}_{ ext{NO}}) + rac{\partial}{\partial x_k}(ar{
ho} ilde{u}_k ilde{y}_{ ext{NO}}) = rac{\partial}{\partial x_k}igg(rac{\mu_t}{\sigma_{NO}}rac{\partial ilde{y}_{ ext{NO}}}{\partial x_k}igg) + ar{
ho} ilde{\omega}_{ ext{NO}}$$

2. 计算结果

实验上的数据采集特征面如图 1 所示,沿截面布置有 6 个测点。图 2、表 1 和表 2 给出了温度场的对比结果,表明基于预混数据库,在特征截面处,温度模拟结果与实验相近近。表 3 给出了 NOx 模拟结果,时均处理 LES 数据后得到的 EINO 值(每千克燃油产生多少克 NOx)为 22.5,大约为实验值的两倍。

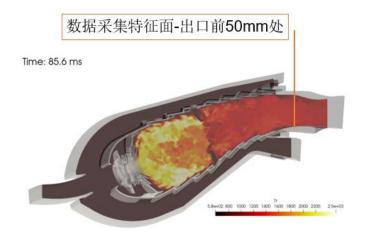


图 1. 实验上的数据采集特征面

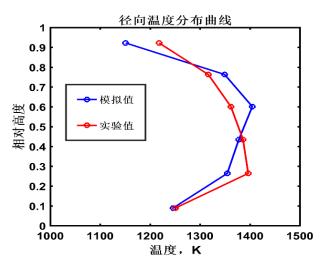


图 2. 径向温度分布曲线

表 1. 温度系数的比较

	T4av(K)	T4max(K)	OTDF	RTDF
计算值	1321.6	1563.3	0.391	0.134
实验值	1322	1478.6	0.252	0.119
误差%	0.04	5.7	55.1	12.6

表 2. 不同测点温度计算值与实验值

测点	1	2	3	4	5	6
相对高度	0.922	0.763	0.601	0.435	0.264	0.089
模拟值(K)	1151	1349.3	1404.7	1377.7	1354.5	1245.8
实验值(K)	1218.1	1316.5	1361.7	1386.1	1396.5	1250.4
误差(%)	-5.5	2.5	3.2	-0.4	-3.0	-0.4

表 3. EINO 计算值与实验值

	EINO_exp	EINO_LES
计算值	10.52	22.5